▎ 摘 要
We report a Pt/graphene catalyst for the methanol oxidation. Graphene is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Graphene-supported Pt electrocatalyst is then reduced by sodium borohydride with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) as a stabilizing agent to prepare highly dispersed Pt nanoparticles on carbon graphene to use as methanol oxidation in direct methanol fuel cell (DMFC) catalysts. X-ray diffractometer and scanning electron microscopy technique are used to investigate the crystallite size and the surface morphologies respectively. The electrochemical characteristics of the Pt/graphene and commercial Pt/C catalysts are investigated by cyclic voltammetry (CV) in nitrogen saturated sulfuric acid aqueous solutions and in mixed sulfuric acid and methanol aqueous solutions. The catalytic activities of the Pt/graphene and Pt/C electrodes for methanol oxidation is 1315 A g(-1) Pt and 725 A g(-1) Pt, which can be revealed the particular properties of the exfoliated graphene supports. Furthermore, Pt/graphene exhibited a better sensitivity, signal-to-noise ratio, and stability than commercial Pt/C. (C) 2012 Elsevier B.V. All rights reserved.