▎ 摘 要
Epitaxy traditionally refers to the growth of a crystalline adlayer on a crystalline surface, and has been demonstrated in several simple material systems over decades. Beyond this, it is not clear whether the growth of 2D materials on templates of various dimensionalities is possible, and no effective theory or model is available for describing the complex epitaxial growth kinetics. Here a library of hexagonal boron nitride epitaxy is presented on graphene-hexagonal boron nitride templates of various dimensionalities, including 2D homo/heteromaterial surface and 1D interfaces of homo/heteromaterials. A framework that allows the description of various kinetic growth by combined geometric and structural modeling is developed. Using these tools, the underlying mechanisms for the complex merging process, grain boundary formation, edge-configuration-dependent growth difference, position-dependent size difference, and the correlation among epilayer orientation, crystal structure and geometry are elucidated. This work provides a general viewpoint for understanding epitaxial growth in complex systems.