▎ 摘 要
The traditional fabrication of graphene-based devices requires polymer-assisted transfer of graphene and a removal procedure of polymer coatings. Here, we propose to turn this process on its head and demonstrate a novel strategy of polymer-coated graphene as an optically antireflective and transparent electrode used in a graphene/silicon (G/Si) solar cell. No additional polymer removal and antireflection coatings (e.g. TiO2 colloids) are needed in our strategy. By engineering the thickness of polymer protective coatings, the light absorption and short-circuit current density of graphene solar cells can be greatly enhanced. We also showed that retaining the polymer coatings avoided the degradation of electrical conductivity of graphene films. With HNO3 doping applied on PMMA-coated G/Si solar cells, the PCEs can reach up to 13.34%. The long-term stabilities of HNO3 doped G/Si solar cells are also improved by using fluoropolymer (CYTOP) coatings on graphene. Our approach provides a novel fabrication method of transparent graphene electrodes for graphene-based optoelectronic devices with excellent light absorption.