• 文献标题:   Ag2S nanoparticles decorated graphene as a selective chemical sensor for acetone working at room temperature
  • 文献类型:   Article
  • 作  者:   JANG AR, LIM JE, JANG S, KANG MH, LEE G, CHANG H, KIM E, PARK JK, LEE JO
  • 作者关键词:   ag2s, ultrasonic irradiation, graphene, chemical sensor, acetone
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:  
  • 被引频次:   12
  • DOI:   10.1016/j.apsusc.2021.150201 EA JUN 2021
  • 出版年:   2021

▎ 摘  要

Decorating graphene with nanoparticles is an effective method for improving gas selectivity and sensitivity of graphene-based chemical sensors. We report herein the enhancement of the gas selectivity and improved response of a graphene-based chemical sensor by decorating the graphene with synthesized Ag2S nanoparticles. To synthesize uniformly sized Ag2S nanoparticles, we used the ultrasonic irradiation method, and then the synthesized Ag2S nanoparticles were decorated onto graphene uniformly, by using a simple spin coating method. Gas responses of the resulting chemical sensor were tested for volatile organic compounds (VOCs) such as acetone, ethanol, and hexane. While no noticeable gas response changes were obtained for ethanol and hexane vapors, a dramatic increase of similar to 660% resulted from exposure of the sensor to acetone vapor. In order to determine the mechanism behind the excellent acetone response of graphene decorated with Ag2S nanoparticles, density functional theory (DFT) calculations were performed, and showed higher binding energies and electron transfer between Ag2S and acetone than between Ag2S and the other VOCs. This result indicated that decorating graphene with nanoparticles displaying a high binding energy for the target gas is an efficient way to improve the gas selectivity and response levels of graphene-based chemical sensors.