▎ 摘 要
The potential implementation of ruthenium-based catalysts in polyvinyl chloride production via acetylene hydrochlorination is hindered by their inferior activity and stability compared to gold-based systems, despite their 4-fold lower price. Combining in-depth characterization and kinetic analysis we reveal the superior activity of ruthenium nanoparticles with an optimal size of 1.5 nm hosted on nitrogen-doped carbon (NC) and identify their deactivation modes: 1) nanoparticle redispersion into inactive single atoms and 2) coke formation at the metal sites. Tuning the density of the NC carrier enables a catalytic encapsulation of the ruthenium nanoparticles into single layer graphene shells at 1073 K that prevent the undesired metal redispersion. Finally, we show that feeding O-2 during acetylene hydrochlorination limits coke formation over the nanodesigned ruthenium catalyst, while the graphene layer is preserved, resulting in a stability increase of 20 times, thus rivalling the performance of gold-based systems.