• 文献标题:   Organic-Inorganic Hybrid Conductive Network to Enhance the Electrical Conductivity of Graphene-Hybridized Polymeric Fibers
  • 文献类型:   Article
  • 作  者:   YANG LJ, PAN L, XIANG HX, FEI X, ZHU MF
  • 作者关键词:  
  • 出版物名称:   CHEMISTRY OF MATERIALS
  • ISSN:   0897-4756 EI 1520-5002
  • 通讯作者地址:  
  • 被引频次:   8
  • DOI:   10.1021/acs.chemmater.1c02754
  • 出版年:   2022

▎ 摘  要

With the rapid development of wearable electronic textiles, flexible and knittable polymer conductive fibers have received unprecedented attention from researchers. Practical applications of these devices are, however, impeded by their low electrical conductivity and suboptimal mechanical properties. In this study, we demonstrate an organic-inorganic hybrid strategy to build a conductive network in polymeric fibers (CPFs) at low GnP loading using an industrial wet-spinning method. Both the conductivity and spinnability of wet-spun graphene-hybridized poly(vinyl alcohol) (PVA/GnP) fibers are systematically investigated. A secondary additive, poly(3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) is also incorporated for the fabrication of newly hybridized PVA/GnP/PEDOT:PSS (denoted as PVA/GnP/S) fibers. In addition, a hybrid synergistic effect that features a synergistic enhancement of their conductivity (33.6 S/m) has also been well demonstrated. Meanwhile, this type of hybrid fiber maintains its excellent mechanical performance (4.82 cN/dtex with a 16.2% strain) even after subsequent twisting and weaving into conductive fabrics. As an electron transport carrier, this fiber can widely be applied in wearable electronics.