• 文献标题:   A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: An in-depth study on the interfacial charge transfer mechanism
  • 文献类型:   Article
  • 作  者:   HIRAGOND CB, LEE J, KIM H, JUNG JW, CHO CH, IN SI
  • 作者关键词:   reduced titania, ndoped go, photocatalysi, co2 reduction, flowreactor system
  • 出版物名称:   CHEMICAL ENGINEERING JOURNAL
  • ISSN:   1385-8947 EI 1873-3212
  • 通讯作者地址:  
  • 被引频次:   39
  • DOI:   10.1016/j.cej.2020.127978 EA APR 2021
  • 出版年:   2021

▎ 摘  要

A desire for renewable alternatives to fossil fuels can be achieved by utilizing CO2, H2O, and solar energy to generate solar fuels. A novel N-doped graphene oxide enfolded reduced titania (NGO-RT) composite was demonstrated for photocatalytic CO2 reduction into CH4. Later, a small amount of Pt NPs was deposited on NGORT that increases the catalytic performance towards CH4 formation. The optimized Pt-1.0%-NGO-RT catalyst displayed a selective visible-light CO2 reduction into CH4 using a flow reactor system with approximate to 12 and approximate to 2 times higher activity than pristine RT and NGO-RT, respectively. The catalyst demonstrated long-term stability over 35 h. The photo-induced CO2 reduction mechanism was first validated through the electron transfer process, where charge trapping by Ti3+ states near the conduction band of RT plays a vital role in the selective CH(4 )evolution. These trapped electrons transfer from RT to the closely connected interface of N-doped graphene oxide and Pt NPs to restrict the recombination of electron/hole pair. The improved catalytic performance can be attributed to RT's downward band bending at the NGO-RT interface, where electron transfer from RT to NGO decreases the charge recombination.