▎ 摘 要
Composite films of graphene and tungsten oxide were fabricated by dip-coating with ammonium nnetatungstate as the precursor and polyvinylpyrrolidone as the bridging agent. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Photocurrent test, electrochemical impedance spectroscopy (EIS), transient photocurrent spectroscopy, and intensity-modulated photocurrent spectroscopy were used to study the transfer process and transport behavior of the charge carriers at the interface of the film electrodes. The results showed that the tungsten oxide nanoparticles were sufficiently composited with graphene. The efficiency of photoelectric conversion improved significantly. The transient constant and the electron-hole lifetime increased after the incorporation of graphene. The electron transit time of the composite film was reduced and was found to be only 47.5% of that of the tungsten oxide film.