• 文献标题:   Strain effect on the optical conductivity of graphene
  • 文献类型:   Article
  • 作  者:   PELLEGRINO FMD, ANGILELLA GGN, PUCCI R
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Univ Catania
  • 被引频次:   134
  • DOI:   10.1103/PhysRevB.81.035411
  • 出版年:   2010

▎ 摘  要

Within the tight-binding approximation, we study the dependence of the electronic band structure and of the optical conductivity of a graphene single layer on the modulus and direction of applied uniaxial strain. While the Dirac-cone approximation, albeit with a deformed cone, is robust for sufficiently small strain, band dispersion linearity breaks down along a given direction, corresponding to the development of anisotropic massive low-energy excitations. We recover a linear behavior of the low-energy density of states, as long as the cone approximation holds, while a band gap opens for sufficiently intense strain, for almost all, generic strain directions. This may be interpreted in terms of an electronic topological transition, corresponding to a change in topology of the Fermi line, and to the merging of two inequivalent Dirac points as a function of strain. We propose that these features may be observed in the frequency dependence of the longitudinal-optical conductivity in the visible range, as a function of strain modulus and direction, as well as of field orientation.