• 文献标题:   Hydrogen intercalation of graphene grown on 6H-SiC(0001)
  • 文献类型:   Article
  • 作  者:   WATCHARINYANON S, VIROJANADARA C, OSIECKI JR, ZAKHAROV AA, YAKIMOVA R, UHRBERG RIG, JOHANSSON LI
  • 作者关键词:   epitaxial graphene, hydrogen intercalation, bilayer, buffer layer free, stm, corelevel photoelectron spectroscopy, arpes, energy filtered xpeem
  • 出版物名称:   SURFACE SCIENCE
  • ISSN:   0039-6028
  • 通讯作者地址:   Linkoping Univ
  • 被引频次:   65
  • DOI:   10.1016/j.susc.2010.12.018
  • 出版年:   2011

▎ 摘  要

Atomic hydrogen exposures on a monolayer graphene grown on the SiC(0001) surface are shown to result in hydrogen intercalation. The hydrogen intercalation induces a transformation of the monolayer graphene and the carbon buffer layer to bi-layer graphene without a buffer layer. The STM, LEED, and core-level photoelectron spectroscopy measurements reveal that hydrogen atoms can go underneath the graphene and the carbon buffer layer and bond to Si atoms at the substrate interface. This transforms the buffer layer into a second graphene layer. Hydrogen exposure results initially in the formation of bi-layer graphene islands on the surface. With larger atomic hydrogen exposures, the islands grow in size and merge until the surface is fully covered with bi-layer graphene. A (root 3 x root 3)R30 degrees periodicity is observed on the bi-layer areas. ARPES and energy filtered XPEEM investigations of the electron band structure confirm that after hydrogenation the single pi-band characteristic of monolayer graphene is replaced by two pi-bands that represent bi-layer graphene. Annealing an intercalated sample, representing bi-layer graphene, to a temperature of 850 degrees C. or higher, re-establishes the monolayer graphene with a buffer layer on SiC(0001). (C) 2011 Elsevier B.V. All rights reserved.