▎ 摘 要
Coating nanostructures on fiber reinforcement is a facile and scalable technique to manufacture next-generation fiber-reinforced polymer composites with tailored physical properties. Optimizing the nanomaterial coating thickness on fibers is vital in tailoring the multifunctionality of fiber-reinforced composites without sacrificing the mechanical performance since it relies on the fiber-matrix interface, where interlaminar and other physical properties are governed. This paper investigates the impact of graphene nanoparticle (GNP) coating thickness on the mechanical properties, fracture behavior, thermo-mechanical, and electromagnetic interference (EMI) shielding effectiveness (SE) of composite structures. We grafted GNPs on carbon fabrics using a solution coating method with various thicknesses (10, 20, and 30 mu m), and GNPs grafted fabrics were impregnated with an epoxy resin. The 20 mu m GNPs coating thickness exhibited the highest mechanical performance, increasing the tensile and interlaminar shear strength by 32% and 26%, respectively, compared to pristine samples. Storage modulus and transition (Tg) temperature values increased by 18.6% and 13.6% for 20 mu m coating thickness, respectively. Besides, the unstable crack growth at the fiber-matrix interface was stabilized when the GNPs coating thickness reached 20 mu m according to delamination toughness tests. While mode-I fracture toughness increased up to 22%, an improvement of 13.5% was obtained in mode-II fracture toughness. The underlying toughening mechanisms at the interfacial region were identified using scanning electron microscopy. The EMI-SE was slightly increased by the GNPs grafting, whereas thinner GNPs coatings exhibited higher shielding efficiency.