▎ 摘 要
An amphiphilic pillar[5]arene (APS) was modified onto the surface of reduced graphene oxide (RGO) to form the water-dispersive RGO-APS nanocomposite. And then, as-prepared gold nanoparticles (AuNPs) self-assembled onto the surface of RGO-APS through amido groups of AP5 to achieve RGO-AP5-AuNPs nanocomposites. It was verified that a large amount of APS molecules had been effectively loaded onto the surface of RGO and lots of AuNPs could be uniformly dispersed on RGO-APS. Electrochemical results showed that the RGO-AP5 could exhibit selective supramolecular recognition and enrichment capability toward guest molecules. More significantly, in electrochemical sensing the guest molecules, ternary nanocomposites RGO-AP5-AuNPs performed the synergetic action of multifunctional properties, which were excellent performances of RGO, selective supramolecular recognition, and enrichment capability of AP5 and catalytic property of AuNPs for guest molecules. Therefore, RGO-AP5-AuNPs showed an outstanding analyzing performance for DA with broad linear range (1.5 X 10(-8) to 1.9X10(-5) M) and low detection limit (1.2 X 10(-8) M) at a signal-to-noise ratio of 3.