• 文献标题:   Improving the Performance of Graphene Phototransistors Using a Heterostructure as the Light-Absorbing Layer
  • 文献类型:   Article
  • 作  者:   CHEN XQ, LIU XL, WU B, NAN HY, GUO H, NI ZH, WANG FQ, WANG XM, SHI Y, WANG XR
  • 作者关键词:   organic semiconductor, graphene, heterostructure, phototransistor, twodimensional
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Nanjing Univ
  • 被引频次:   24
  • DOI:   10.1021/acs.nanolett.7b03263
  • 出版年:   2017

▎ 摘  要

Interfacing light-sensitive semiconductors with graphene can afford high-gain phototransistors by the multiplication effect of carriers in the semiconductor layer. So far, most devices consist of one semiconductor light absorbing layer, where the lack of internal built-in field can strongly reduce the quantum efficiency and bandwidth. Here, we demonstrate a much improved graphene phototransistor performances using an epitaxial organic heterostructure composed of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and pentacene as the light-absorbing layer. Compared with single light-absorbing material, the responsivity and response time can be simultaneously improved by 1 and 2 orders of magnitude over a broad band of 400-700 nm, under otherwise the same experimental conditions. As a result, the external quantum efficiency increases by over 800 times: Furthermore, the response time of the heterostructured phototransistor is highly gate-tunable down to sub-30 mu s, which is among the fastest in the sensitized graphene phototransistors interfacing with electrically passive light-absorbing semiconductors. We show that the improvement is dominated by the efficient electron hole pair dissociation due to interfacial built-in field rather than bulk absorption. The structure demonstrated here can be extended to many other organic and inorganic semiconductors, which opens new possibilities for high-performance graphene-based optoelectronics.