▎ 摘 要
First-principle calculation based on density functional theory is performed to study the lattice vibration, heat capacity, and thermal conductivity of graphene under strain. Two degenerate optical branches in the phonon dispersion curves split near the G points due to the reduced crystal symmetry, and the frequencies of the optical phonon modes shift down thus inducing more phonon modes at a given temperature. The heat capacity is increased, but the thermal conductivity is reduced because of enhanced Umklapp scattering among more phonons. This phenomenon should be considered when determining the heat management of graphene-based devices. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752010]