▎ 摘 要
Graphene and carbon nanotube (CNT) aerogels provide combinations of mechanical, thermal, and electrical properties that are interesting for a variety of applications. In this work, the impact of three different reducing agents (L-ascorbic acid (LAA), HI and NaHSO3) and carbon nanotubes on the morphologies and properties of the graphene aerogels (GAs) are studied systematically. Additional, the impact of thermal annealing at 450 degrees C for 5 h under Ar environment is also investigated. Annealing treatment and the addition CNTs enhance the electrical conductivities of the GAs up to a factor of 5. Thermal annealing impacts the surface area of the GAs. Specifically, the surface areas of those reduced by HI and NaHSO3 decreased by 30%, while those reduced by LAA or dispersed with CNTs increased by 15%. The thermal conductivity of the highly porous GAs is measured using an improved infrared microscopy technique to be -0.10 W/(m K). The optimization of the nanostructures and properties of the GAs is important for various applications, such as energy storage devices and nanocomposites. (C) 2014 Elsevier B.V. All rights reserved.