▎ 摘 要
By means of ab initio calculations within density-functional theory, the structural, electronic and magnetic properties of a zigzag-edged graphene nanoribbon (ZGNR) with 3d transition-metal atoms (TMAs) (Sc-Zn) embedded in the periodically distributed single vacancies are systematically studied. Different from the pristine ZGNR, all of these composite structures show the subband structures with nontrivial spin polarizations, regardless of the type and the embedding position of the TMA. Embedding one kind of these atoms (V, Cr, Ni, Cu or Zn) near one ribbon edge can cause a notable edge distortion. Except for the cases of Sc, Fe and Co doping, other kinds of TMAs embedded near an edge of the ribbon can suppress the inherent magnetism of the zigzag edge. By further analysis, we find that two effects are responsible for the suppression of edge magnetism. One is the variation of the occupied spin-polarized subbands due to the hybridization of the edge state of the ZGNR and 3d atomic states of the dopant. The other is the delocalization of the edge state caused by the exotic TMA. The unilateral magnetism of these TMA-embedded ZGNRs can be utilized to realize the spin-polarized electronic transport, which is the key electronic property in the context of spintronics applications of carbon-based materials.