▎ 摘 要
Incorporating single or combined nanofillers in polymeric matrices is a promising approach for developing antimicrobial materials for applications in wound healing and packaging etc. This study reports a facile fabri-cation of antimicrobial nanocomposite films using biocompatible polymers sodium carboxymethyl cellulose (CMC) and sodium alginate (SA) reinforced with nanosilver (Ag) and graphene oxide (GO) using the solvent casting approach. Eco-friendly synthesis of Ag nanoparticles within a size range of 20-30 nm was carried out within the polymeric solution. GO was introduced into the CMC/SA/Ag solution in different weight percentages. The films were characterized by UV-Vis, FT-IR, Raman, XRD, FE-SEM, EDAX, and TEM. The results indicated the enhanced thermal and mechanical performance of CMC/SA/Ag-GO nanocomposites with increased GO weight %. The antibacterial efficacy of the fabricated films was evaluated on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The CMC/SA/Ag-GO2% nanocomposite exhibited the highest zone of inhibition of 21.30 +/- 0.70 mm against E. coli and 18.00 +/- 1.00 mm against S. aureus. The CMC/SA/Ag-GO nanocomposites exhibited excellent antibacterial activity as compared to CMC/SA and CMC/SA-Ag due to the synergetic bacterial growth inhibition activities of the GO and Ag. The cytotoxic activity of the prepared nanocomposite films was also assessed to investigate their biocompatibility.