▎ 摘 要
Holey graphene nanosheets (HGNS) contain nanoholes on the surface of graphene sheets and these nanoholes can provide the rich mass transfer channel for the electrons and the ions, thus induce more hole edge defects, controllable band gap and better mechanical stability. Here, HGNS were massive production by dualelectrochemical intercalation and microwave-assisted expansion of graphite. The final obtained HGNS contain few layer graphene (5-10 layers), with ultralow defects (ID/IG < 0.07) and higher electrical conductivity (691S/ cm). The holey anodic graphene nanosheets demonstrate a narrow peak of pore size distribution centering at around 1.13 nm, 3 nm and a broad range from 3 nm to 252 nm centered at 68 nm, which denoting the characters of micropore, mesoporous and macropore structure. The holey cathodic graphene nanosheets with the feature of mesoporous and macropore structure in which the pore size in the range of 2 nm-252 nm centered at 3.18 nm, 68 nm.