• 文献标题:   A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis
  • 文献类型:   Article
  • 作  者:   AMANI MA, EBRAHIMI F, DABBAGH A, RASTGOO A, NASIRI MM
  • 作者关键词:   machine learning, graphene oxide reinforced nanocomposite, thermal buckling, shear deformable beam theory
  • 出版物名称:   ENGINEERING WITH COMPUTERS
  • ISSN:   0177-0667 EI 1435-5663
  • 通讯作者地址:  
  • 被引频次:   17
  • DOI:   10.1007/s00366-020-00945-9
  • 出版年:   2021

▎ 摘  要

In this paper, analytical functions for the estimation of the temperature-dependent behaviors of poorly and highly dispersed graphene oxide reinforced nanocomposite (GORNC) materials are studied in the framework of a machine learning-based approach. The validity of the presented models is shown comparing the results achieved from this modeling with those reported in the open literature. Also, the application of the obtained functions in solving the thermal buckling problem of beams constructed from such nanocomposites is demonstrated based on an energy-based method incorporated with a shear deformable beam hypothesis. The verification of the results indicates that the presented mechanical model can approximate the buckling behaviors of nanocomposite beams with remarkable precision. It can be realized from the results that the temperature plays an indispensable role in the determination of the buckling load which can be endured by the nanocomposite structure.