• 文献标题:   Alkalide-Assisted Direct Electron Injection for the Noninvasive n-Type Doping of Graphene
  • 文献类型:   Article
  • 作  者:   PARK S, KIM YT, MIN H, MOON SM, LEE S, LEE CY
  • 作者关键词:   electron injection, graphene, sodium anion, ntype doping, metallomacrocycle, noncovalent interaction
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1021/acsami.0c19153
  • 出版年:   2021

▎ 摘  要

Although the doping of graphene grown by chemical vapor deposition is crucial in graphene-based electronics, noninvasive methods of n-type doping have not been widely investigated in comparison with p-type doping methods. We developed a convenient and robust method for the noninvasive n-type doping of graphene, wherein electrons are directly injected from sodium anions into the graphene. This method involves immersing the graphene in solutions of [K(15-crown-5)(2)]Na prepared by dissolving a sodium-potassium (NaK) alloy in a 15-crown-5 solution. The n-type doping of the graphene was confirmed by downshifted G and 2D bands in Raman spectra and by the Dirac point shifting to a negative voltage. The electron-injected graphene showed no sign of structural damage, exhibited higher carrier mobilities than that of pristine graphene, and remained n-doped for over a month of storage in air. In addition, we demonstrated that electron injection enhances noncovalent interactions between graphene and metallomacrocycle molecules without requiring a linker, as used in previous studies, suggesting several potential applications of the method in modifying graphene with various functionalities.