▎ 摘 要
Precise acquisition of the blood glucose level is one of the most critical indicators for the prevention and treatment of diabetes. Compared with the high cost and instability of enzyme-based glucose sensors, the development of low-cost, high-sensitivity, and fast-response nonenzymatic glucose sensors is imperative. Herein, bulk Co3O4-embedded N-doped laser-induced graphene (Co3O4@NLIG) powder is in situ fabricated through a high-efficiency and simple laser-scribing technique and successfully made into a screen-printing paste for screen-printed electrodes (SPEs), followed by use as an enzyme-free glucose sensor. The electrocatalytic results show that the as-prepared Co3O4@NLIG/ SPE glucose sensor has a high sensitivity of 143 mu A mM-1 cm-2, a broad linear detection range of 1 mu M to 11 mM, an ultralow detection limit of 0.48 mu M, and a rapid response time of <1 s. The as-prepared sensor also has prominent reproducibility, stability, and immunity to interference. Furthermore, the glucose-sensing mechanism of the sensor is profoundly explored. Such an outstanding electrocatalytic performance endows the Co3O4@NLIG/SPE nonenzymatic glucose sensor with potential applications in blood glucose monitoring and diagnosis.