▎ 摘 要
High-charge-capacity sodium-ion battery anodes made of Sb2Te3@reduced graphene oxide are reported for the first time. Uniform nano-coating of graphene oxide is carried out from common sol of peroxotellurate and peroxoantimonate under room temperature processing. Reduction by hydrazine under glycerol reflux yields Sb2Te3@reduced graphene oxide. The electrodes exhibit exceptionally high volumetric charge capacity, above 2300 mAh cm(-3) at 100 mA g(-1) current density, showing very good rate capabilities and retaining 60% of this capacity even at 2000 mA g(-1). A comparison of sodiation and lithiation shows that lithiation exhibits better volumetric charge capacity, but surprisingly only marginally better relative rate capability retention at 2000 mA g(-1). Tellurium-based electrodes are attractive due to the high volumetric charge capacity of Te, its very high electric conductivity, and the low relative expansion upon lithiation/sodiation. (C) 2017 Published by Elsevier Inc.