▎ 摘 要
Hybrid composites of poly(methyl methacrylate) (PMMA) and polyvinyl chloride (PVC) with multilayered graphene/iron oxide (MLG/Fe3O4) were prepared by solution casting. Tensile and viscoelastic characteristics of the hybrid nanocomposites were studied in comparison with the corresponding pure polymer and polymer/MLG composite. Increase in Fe(3)O(4)content in the hybrid composites reduces their electrical conductivity and thermal stability. The hybrid composite films were hot stacked to get a 2-mm-thick multilayered sandwich structure and tested for their X-band microwave absorption characteristics. The decrease in electrical conductivity resulted in lower overall shielding effectiveness of the hybrid composites. Hybrid composites with 2.5 wt.% Fe(3)O(4)exhibited satisfactory electromagnetic interference (EMI) shielding effectiveness at par with the polymer/MLG composites. The hybrid nanocomposites had a significantly higher influence of absorption in the overall shielding effectiveness when compared to the respective polymer/MLG composites. Both PMMA-based and PVC-based graphene/Fe(3)O(4)hybrid nanocomposites with proper filler contents are found suitablefor EMI shielding solutions with higher absorption requirements.