▎ 摘 要
We report a versatile method based on low vacuum annealing of cellulose acetate on nickel (Ni) surface for rapid fabrication of graphene and carbon nanotube (CNT)-graphene hybrid films with tunable properties. Uniform films mainly composed of tri-layer graphene can be achieved via a surface precipitation of dissociated carbon at 800 degrees C for 30 seconds under vacuum conditions of similar to 0.6 Pa. The surface precipitation process is further found to be efficient for joining the precipitated graphene with pre-coated CNTs on the Ni surface, consequently, generating the hybrid films. As expected, the hybrid films exhibit substantial opto-electrical and field electron emission properties superior to their individual counterparts. The finding suggests a promising route to hybridize the graphene with diverse nanomaterials for constructing novel hybrid materials with improved performances.