• 文献标题:   Molecular junctions for thermal transport between graphene nanoribbons: Covalent bonding vs. interdigitated chains
  • 文献类型:   Article
  • 作  者:   DI PIERRO A, SARACCO G, FINA A
  • 作者关键词:   thermal conductance, molecular junction, thermal transport, non equilibrium molecular dynamic, graphene
  • 出版物名称:   COMPUTATIONAL MATERIALS SCIENCE
  • ISSN:   0927-0256 EI 1879-0801
  • 通讯作者地址:   Politecn Torino
  • 被引频次:   5
  • DOI:   10.1016/j.commatsci.2017.10.019
  • 出版年:   2018

▎ 摘  要

Proper design and manufacturing thermal bridges based on molecular junctions at the contact between graphene platelets or other thermally conductive nanoparticles would provide a fascinating way to produce efficient heat transport networks for the exploitation in heat management applications. In this work, using Non Equilibrium Molecular Dynamics, we calculated thermal conductance of alkyl chains used as molecular junctions between two graphene nanoribbons, both as covalently bound and as Van der Waals interdigitated chains. Effect of chain length, grafting density, temperature and chain interdigitation were systematically studied. A clear reduction of conductivity was found with increasing chain length and decreasing grafting density, while lower conductivity was observed for Van der Waals interdigitated chains compared to covalently bound ones. The importance of molecular junctions in enhancing thermal conductance at graphene nanoribbons contacts was further evidenced by calculating the conductance equivalence between a single chain and an overlapping of un-functionalized graphene sheets. As an example, one single pentyl covalently bound chain was found to have a conductance equivalent to the overlapping of an area corresponding to about 152 carbon atoms. These results contribute to the understanding of thermal phenomena occurring within networks of thermally conductive nanoparticles, including graphene nanopapers and graphene-based polymer nanocomposites, which are or high interest for the heat management application in electronics and generally in low-temperature heat exchange and recovery. (C) 2017 Elsevier B.V. All rights reserved.