• 文献标题:   Oxidation of phthalate acid esters using hydrogen peroxide and polyoxometalate/graphene hybrids
  • 文献类型:   Article
  • 作  者:   HUO Y, ZHANG D, WU JH, WANG XZ, WANG XH, SHAO CL, CRITTENDEN JC, HUO MX
  • 作者关键词:   polyoxometalate, graphene, phthalate acid ester, removal, oxidation
  • 出版物名称:   JOURNAL OF HAZARDOUS MATERIALS
  • ISSN:   0304-3894 EI 1873-3336
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.jhazmat.2021.126867 EA AUG 2021
  • 出版年:   2022

▎ 摘  要

Phthalate acid esters (PAEs) have been adsorbed and oxidatively degraded into small molecules including lactic acid (LA), formic acid (FA), H2O and CO2 using polyoxometalates (POMs)/graphene hybrids. We demonstrated that super-lower concentrations of PAEs could be oxidized, which was due to their unique structure. POM molecules have been embedded onto graphene to form H5PMo10V2O40@surfactant(n)/Graphene(L wt%) (abbreviated as HPMoV@Surf(n)/GO(L wt%)) using surfactants with the carbon chain length n = 2, 4, 6 and 8 for the loading of HPMoV. The coexistence of the graphene and surfactant layer (on HPMoV@Surf(n)/GO(20 wt %)) adsorbed PAE molecules and transported them rapidly to HPMoV active sites. And n values determined the electron transfer ability between graphene and POMs that promoted PAEs oxidation. The loading of POMs on the surface of graphene permitted HPMoV@Surf(n)/GO(L wt%) act as interfacial catalyst which degraded various PAEs (i.e., diethyl phthalate (DEP), diallyl phthalate (DAP) and di (2-ethylhexyl) phthalate (DEHP)) while removed more than 70% of TOC and COD. The degradation of DEP achieved 93.0% with HPMoV@Surf(n)/GO (20 wt%) and H2O2, which followed first-order kinetics and the reaction activation energy (Ea) of 23.1 kJ/mol. Further, HPMoV@Surf(n)/GO(20 wt%) showed potential for the removal of PAEs in Wastewater Treatment Plant (WWTP), and the degradation efficiency for PAE (DEP) in secondary effluent achieved 55.0%. In addition, the loading method for POMs on graphene eliminated the leaching of POMs from graphene, and the degradation efficiency could still reach 88.1% after ten recycles.