▎ 摘 要
A new approach based on far infrared-assisted in situ reduction was developed for the facile one-step preparation of graphenenickel nanoparticle hybrid by refluxing a mixture solution containing graphene oxide, nickel(II) sulfate, and hydrazine over an far-infrared heater. The reduction time was as short as 20 min. The structure of the material was investigated by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, vibrating sample magnetometery, and Fourier transform infrared spectroscopy. Magnetic investigations indicate that the graphemenickel nanoparticle hybrid exhibits ferromagnetic behavior at room temperature. Meanwhile, the hybrid was successfully employed in the enrichment and identification of proteins and peptides in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on its excellent magnetic responsibility, high dispersibility, large surface area, and hydrophobicity, indicating great promise for a wide range of applications.