• 文献标题:   Plasma-assisted three-dimensional lightscribe graphene as high-performance supercapacitors
  • 文献类型:   Article
  • 作  者:   NAMDAR N, GHASEMI F, SANAEE Z
  • 作者关键词:  
  • 出版物名称:   SCIENTIFIC REPORTS
  • ISSN:   2045-2322
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1038/s41598-022-08315-9
  • 出版年:   2022

▎ 摘  要

Graphene-based supercapacitors demonstrate extraordinary energy storage capacity due to their layered structure, large effective surface area, high electrical conductivity and acceptable chemical stability. Herein, reduced graphene oxide (rGO)-based supercapacitors were introduced in a simple, and fast method with considerable performance. For this purpose, graphene oxide (GO) was synthesized by the modified Hummers' method and then easily reduced to desired patterns of rGO using a commercial LightScribe DVD drive. In order to increase the effective surface area, as well as the electrical conductivity of rGO layers, oxygen/sulfur hexafluoride plasma was applied to the rGO followed by laser irradiation. By performing such sequential processes, an rGO-based supercapacitor was introduced with a capacitance of about 10.2 F/cm(3), which had high stability for more than 1000 consecutive charge-discharge cycles. The fabrication steps of the electrodes were investigated by different analyses such as SEM, TEM, Raman, surface resistance, BET, and XPS measurements. Results showed that these rGO-based electrodes fabricated by sequential processes are very interesting for practical applications of energy storage.