▎ 摘 要
The booming of modern electronic devices featuring increasing power and multi-functionalization demands novel high thermal conductive materials with various functions, such as self-healing property and high deformability, while traditional polymer-based or metallic-based materials could hardly provide. Therefore, we report a high thermal conductive and disulfide-based self-healable and reprocessible liquid crystalline elastomer (SHLCE) composite by incorporating graphene nanoplates (GNPs) fillers. The obtained GNPs/SHLCE composites exhibited desired thermal conductivity (5.08 Wm(-1)K(-1)) when the content of GNPs was 20 wt% to the composites. Moreover, the GNPs/SHLCE composites showed intriguing recycled performance (Tensile strength after recycle could maintain over 93% compared with that of original composites). Furthermore, we concluded that the improved thermal conductivity of GNPs/SHLCE composites was beneficial to the thermal induced reprocessible and shelf-healable systems.