▎ 摘 要
In this letter, we demonstrate a nonvolatile memory device in a graphene field-effect-transistor structure using ferroelectric gating. The binary information, i.e., "1" and "0", is represented by the high and low resistance states of the graphene working channels and is switched by controlling the polarization of the ferroelectric thin film using gate voltage sweep. A nonvolatile resistance change exceeding 200% is achieved in our graphene-ferroelectric hybrid devices. The experimental observations are explained by the electrostatic doping of graphene by electric dipoles at the ferroelectric/graphene interface.