▎ 摘 要
Bottom-contact bottom-gate organic field-effect transistors (OFETs) are fabricated using a low band gap pDTTDPP-DT polymer as a channel material and single-layer graphene (SLG) or Au source/drain electrodes. The SLG-DaSed ambipolar OFETs significantly outperform the Au-based ambipolar OFETs, and thermal annealing effectively improves the carrier mobilities of the pDTTDPP-DT :films. The difference is attributed to the following facts: (i) the thermally annealed pDTTDPP-DT chains on the SLG assume more crystalline features with an edge-on orientation as compared to the polymer chains on the Au, (ii) the morphological features of the thermally annealed pDTTDPP-DT films on the SLG electrodes are closer to the features of those on the gate dielectric layer, and (iii) the SLG electrode provides a flatter, more hydrophobic surface that is favorable for the polymer crystallization than the Au. In addition, the preferred carrier transport in each electrode-based OFET is associated With the HOMO/LUMO alignment relative to the Fermi level of the employed electrode. All of these "experimental results consistently explain why the carrier mobilities of the SLG-based OFET are more than 10 times higher than those of the Au-based OTFT. This work demonstrates the strong dependence of ambipolar carrier transport on the source/drain electrode and annealing temperature.