▎ 摘 要
2D transition metal dichalcogenides (TMDCs) have attracted considerable attention due to their impressively high performance in optoelectronic devices. However, efficient infrared (IR) photodetection has been significantly hampered because the absorption wavelength range of most TMDCs lies in the visible spectrum. In this regard, semiconducting 2D MoTe2 can be an alternative choice owing to its smaller band gap approximate to 1 eV from bulk to monolayer and high carrier mobility. Here, a MoTe2/graphene heterostructure photodetector is demonstrated for efficient near-infrared (NIR) light detection. The devices achieve a high responsivity of approximate to 970.82 A W-1 (at 1064 nm) and broadband photodetection (visible-1064 nm). Because of the effective photogating effect induced by electrons trapped in the localized states of MoTe2, the devices demonstrate an extremely high photoconductive gain of 4.69 x 10(8) and detectivity of 1.55 x 10(11) cm Hz(1/2) W-1. Moreover, flexible devices based on the MoTe2/graphene heterostructure on flexible substrate also retains a good photodetection ability after thousands of times bending test (1.2% tensile strain), with a high responsivity of approximate to 60 A W-1 at 1064 nm at V-DS = 1 V, which provides a promising platform for highly efficient, flexible, and low cost broadband NIR photodetectors.