• 文献标题:   Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC
  • 文献类型:   Article
  • 作  者:   CIUK T, CABAN P, STRUPINSKI W
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Inst Elect Mat Technol
  • 被引频次:   11
  • DOI:   10.1016/j.carbon.2016.01.093
  • 出版年:   2016

▎ 摘  要

Epitaxial Chemical Vapor Deposition growth of graphene on silicon carbide offers the maturity and reliability expected for large-scale fabrication of graphene-based devices. In particular, the ultimate challenge of graphene synthesis on SiC, i.e. quasi-free-standing monolayer graphene which comes through hydrogen atom intercalation of the sole buffer layer grown on the Si-face of SiC, offers high carrier mobility (as high as 6600 [cm(2)/Vs]) and electrical stability throughout the device processing cycle. In this report, we present extensive statistics of the electrical properties of QFS-monolayer graphene grown on 4H(0001) and 6H(0001) semi-insulating 10 mm x 10 mm substrates, being a result of 110 individual processes. The adopted explanation for the origin of the as-grown doping level in epitaxial graphene based on the spontaneous polarization of hexagonal SiC and its most up-to-date values is reaffirmed. We introduce the issue of the step-edge-induced offset voltage radial dependence and confront it with the morphological analysis of the average step edge height and terrace width, all related to the place of origin of a specific sample within a 4-inch SiC wafer. Finally, we conclude that within the step edge area QFS-monolayer graphene is statistically nearly half as resistive as the previously reported QFS-bilayer graphene. (C) 2016 Elsevier Ltd. All rights reserved.