• 文献标题:   Structural Control and Electrical Behavior of Thermally Reduced Graphene Oxide Samples Assisted with Malonic Acid and Phosphorus Pentoxide
  • 文献类型:   Article
  • 作  者:   AUKSTAKOJYTE R, GAIDUKEVIC J, NIAURA G, SKAPAS M, BUKAUSKAS V, BARKAUSKAS J
  • 作者关键词:   thermally reduced graphene oxide, carbon suboxide, phosphorus doped reduced graphene oxide, structural analysi, electrical conductivity
  • 出版物名称:   INORGANICS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.3390/inorganics10090142
  • 出版年:   2022

▎ 摘  要

We present a detailed study of the structural and electrical changes occurring in two graphene oxide (GO) samples during thermal reduction in the presence of malonic acid (MA) (5 and 10 wt%) and P2O5 additives. The morphology and de-oxidation efficiency of reduced GO (rGO) samples are characterized by Fourier transform infrared, X-ray photoelectron, energy-dispersive X-ray, Raman spectroscopies, transmission electron and scanning electron microscopies, X-ray diffraction (XRD), and electrical conductivity measurements. Results show that MA and P2O5 additives are responsible for the recovery of pi-conjugation in rGO as the XRD pattern presents peaks corresponding to (002) graphitic-lattice planes, suggesting the formation of the sp(2)-like carbon structure. Raman spectra show disorders in graphene sheets. Elemental analysis shows that the proposed reduction method in the presence of additives also suggests the simultaneous insertion of phosphorus with a relatively high content (0.3-2.3 at%) in rGO. Electrical conductivity measurements show that higher amounts of additives used in the GO reduction more effectively improve electron mobility in rGO samples, as they possess the highest electrical conductivity. Moreover, the relatively high conductivity at low bulk density indicates that prepared rGO samples could be applied as metal-free and non-expensive carbon-based electrodes for supercapacitors and (bio)sensors.