• 文献标题:   Tight-binding studies of uniaxial strain in T-graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   HOPKINSON J, HANCOCK Y
  • 作者关键词:   tightbinding studie, strain engineering, tgraphene nanoribbon, relativistic propertie, dirac system
  • 出版物名称:   JOURNAL OF PHYSICSCONDENSED MATTER
  • ISSN:   0953-8984 EI 1361-648X
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1088/1361-648X/ac5a02
  • 出版年:   2022

▎ 摘  要

The role of uniaxial strain in armchair, T-graphene nanoribbons (ATGNRs) with symmetric and asymmetric structures is investigated using a nearest-neighbour, tight-binding (TB) model. ATGNRs with structural symmetry and two a sub-lattice structure exhibit Dirac points at zero strain. Application of uniaxial strain to these systems induces multiple Dirac points under compression (up to -20% strain), with the number of these points commensurate with the number of tetra-carbon base-units along the width of the unit cell, accounting also for the mirror symmetry of the structure. Under tensile, uniaxial strain (up to 20% extension), the induced asymmetry in the carbon tetrabond results in the number of Dirac points being reduced, although a minimum number are preserved due to the fundamental mirror-symmetry of the symmetric ATGNR. Asymmetric ATGNRs, which are semiconductors, are shown to have tunable band-gaps that decrease as a function of increasing ribbon width and uniaxial strain. Uniaxial strain induces a single Dirac point at the band edge of these systems under high compression (>16%), with the closing of the band gap linked to symmetry-induced perturbations in the structure that override the symmetry-breaking, gap-opening mechanisms. In summary, the TB model shows ATGNRs to have suitable device features for flexible electronics applications, such as band-gap tuning, and for the strain engineering of relativistic properties.