▎ 摘 要
Heterojunction structure has been extensively employed for the design of novel catalysts. In the present study, density functional theory was utilized to investigate the electronic structure and hydrogen evolution performance of Ti3C2O2 MXene quantum dots/graphene (QDs/G) heterostructure. Results show that a slight distortion can be observed in graphene after hybriding with QDs, due to which the electronic structure of QDs have been changed. Associated with such QDs-graphene interaction, the catalytic activity of Ti3C2O2 QDs has been optimized, leading to excellent HER catalytic performance.