▎ 摘 要
We present a facile low-cost method to produce nitrogen-doped holey graphene (N-HGE) and its application to supercapacitors. A composite of N-HGE and activated carbon (AC) was used as the electrode active material in organic-electrolyte supercapacitors, and the performances were evaluated. Melamine was mixed into graphite oxide (GO) as the N source, and an ultra-rapid heating method was used to create numerous holes during the reduction process of GO. X-ray photoelectron spectra confirmed the successful doping with 2.9-4.5 at.% of nitrogen on all samples. Scanning electron micrographs and Raman spectra revealed that a higher heating rate resulted in more holes and defects on the reduced graphene sheets. An extra annealing step at 1000 degrees C for 1 h was carried out to further eliminate residual oxygen functional groups, which are undesirable in the organic electrolyte system. Compared to the low-heating-rate counterpart (N-GE-15), N-HGE boosted the specific capacity of the supercapacitor by 42 and 22% at current densities of 0.5 and 20 A/g, respectively. The effects of annealing time (0.5, 1, and 2 h) at 1000 degrees C were also studied. Longer annealing time resulted in higher capacitance values at all current densities due to the minimized oxygen content. Volumetric specific capacitances of 49 and 24 F/cm(3) were achieved at current densities of 0.5 and 20 A/g, respectively. For the high-power-density operation at 31,000 W/kg (or 10,000 W/L), an energy density as high as 11 Wh/kg (or 3.5 Wh/L) was achieved. The results indicated that N-HGE not only improved the conductivity of the composite supercapacitors but also accelerated ion transport by way of shortened diffusion paths through the numerous holes all over the graphene sheets.