▎ 摘 要
We report ZnO nanorod-graphene hybrid architectures (ZnO-G HAs) composed of regular arrays of ZnO nanorods formed on few-layer graphene films transferred to transparent and/or flexible substrates. The ZnO-G HAs exhibited a high current flow reaching similar to 1.1 mA at all applied bias of 1 V and good optical transmittance in the range of 70-80%, comparable to those of a graphene layer. In addition, cathodoluminescence images and photoluminescence spectra of the ZnO-G HAs showed distinct light emission involving optical transitions in the ZnO nanorod array. Moreover, a bending test demonstrated that the ZnO-G HAs exhibit excellent mechanical flexibility and structural stability for the bending radius down to similar to 4 mm. Our results suggest that the 1D-2D HAs provide unique and multiple functions as can be applicable for next-generation electronic and optoelectronic systems.