• 文献标题:   Contact resistance based tactile sensor using covalently cross-linked graphene aerogels
  • 文献类型:   Article
  • 作  者:   KUMAR P, SILHAVIK M, ZAFAR ZA, CERVENKA J
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:  
  • 被引频次:   6
  • DOI:   10.1039/d1nr06893h EA JAN 2022
  • 出版年:   2022

▎ 摘  要

A movable electrical contact between two materials is one of the most fundamental, simple, and common components in electronics that is used for binary control of a conducting path in an electrical circuit. Here, variable contact resistance between a highly elastic graphene aerogel and a rigid metal electrode is used for the analysis of non-binary pushing and pulling mechanical forces acting on the contact, enabling superior strain and pressure measurements. The variable contact resistance based electromechanical sensors demonstrate superfast, ultrasensitive and quantitative measurements of compressive and tensile stress from -1.18 MPa to 0.55 MPa. The sensors can operate over the temperature range of -60 to 100 degrees C, cover the whole skin and human motion range, and determine the weight of a grasped object. The measurement of such high forces has only been possible due to the high-temperature induced covalent cross-linking of graphene in the aerogel that provides high strength, durability, and fast response (<0.5 ms) to the sensing element. The study demonstrates the great potential of the contact resistance-controlled sensing, which enables high-precision and reliable measurement of strain and pressure over a remarkable large sensing range, providing new opportunities for applications in human-machine interfaces, robotics, flexible electronics, and haptic technology.