▎ 摘 要
Low-dimensional carbon nanocomposite-based architectures and anchoring zero-dimensional carbon dots on two-dimensional graphene sheets may provide an important approach to develop energy harvesting and conversion strategies. In this work, as a novel photoelectrode with a high photocurrent response performance based on a composite made with all carbon-based materials consisting of p-type graphene oxide (GO) and n-type nitrogen, sulfur co-doped carbon dot (NS-CD) has been prepared via the electrophoretic deposition approach. The photoelectrochemical measurement shows that the GO/NS-CD composite greatly suppresses the charge recombination and evidently enhances the photocurrent response activity. It is anticipated that this work may pave a valuable step for the further development of all carbon-based optoelectronic devices with excellent performance.