▎ 摘 要
Photoinduced charge separation significantly affects the optoelectronic performance of the lateral MoS2-graphene junctions. Generally, an adiabatic mechanism governs electron transfer (ET) at a chemically binding interface. Counterintuitively, we demonstrate, using nonadiabatic (NA) molecular dynamics, that an NA mechanism dominates the ET from MoS2 to graphene in the lateral MoS2-graphene covalent junction. The anomalous ET mechanism arising from the built-in electric field formed at the interface that decreases the donor-acceptor interaction by driving electrons and holes moving to opposite directions. Driven by both graphene and MoS2 vibrations, the photoexcited electrons on MoS2 rapidly transfer into graphene by the NA mechanism within 200 fs, which is faster than electron-phonon energy relaxation and ensures that "hot" electrons can be successfully extracted before they cool and lose energy to heat. The study establishes a mechanistic understanding of the complex charge-phonon dynamics in the lateral MoS2-graphene junctions that are key to optoelectronic and photovoltaic applications.