▎ 摘 要
The design and construction of nanostructured electrode catalysts with high activity at low cost are crucial elements in fuel cell technologies. Here, we demonstrate a combined hydrothermal self-assembly, freeze-drying, and thermal annealing approach for the fabrication of a hybrid catalyst made from nanosized Pt particles and three-dimensional (3D) nitrogen-doped graphene nanoribbons (N-GNRs). The resulting 3D architecture possesses a large surface area, interconnected porous networks, uniform nitrogen distribution, extremely small sizes of PtNPs and good electrical conductivity, which are highly desirable for electrocatalysis of the methanol oxidation reaction. As a consequence, remarkable electrocatalytic properties including exceptional electrocatalytic activity, strong poison tolerance as well as superior long-term stability are achieved for the Pt/N-GNR architecture, all of which outperform those observed for Pt/Vulcan XC-72 (Pt/C), Pt/carbon nanotube (Pt/CNT) and Pt/undoped GNR (Pt/GNR) catalysts.