• 文献标题:   Highly enhanced proton conductivity of single-step-functionalized graphene oxide/nafion electrolyte membrane towards improved hydrogen fuel cell performance
  • 文献类型:   Article
  • 作  者:   BARIK B, YUN Y, KUMAR A, BAE H, NAMGUNG Y, PARK JY, SONG SJ
  • 作者关键词:   nafionbased proton exchange, membrane, singlestepphosphorylation, graphene oxide, proton conductivity, hydrogen fuel cell
  • 出版物名称:   INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • ISSN:   0360-3199 EI 1879-3487
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.ijhydene.2022.12.137 EA MAR 2023
  • 出版年:   2023

▎ 摘  要

Acidic group functionalized graphene oxide (GO) as a filler to the state-of-art Nafion electrolytes are regarded as potential materials towards next-generation fuel cell application. However, the tedious synthesis process for GO functionalization, and aggravated chemical durability at high temperatures demands the scientific community to design suitable Nafion-based functionalized GO electrolytes with superior proton conductivity and power density at actual fuel cell conditions i.e., 80 degrees C and 100% relative humidity (RH). Herein, a potential single-step-phosphorylated graphene oxide (sPGO) modified Nafion (sPGO/NF) is introduced to simultaneously multifold the proton conductivity, chemical durability, and power density of Nafion. Under actual fuel cell conditions, the sPGO/NF exhibits maximum proton conductivity (0.306 Scm(-1)) which is 1.7-fold and 1.6-fold higher than that of rNF and GO/NF, respectively. Moreover, sPGO/NF achieves the maximum power density of 0.652 Wcm(-2) (80 degrees C, 100% RH), much higher than the rNF (0.51 Wcm(-2)) and GO/NF (0.53 Wcm(-2)) at same condition. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.