• 文献标题:   Nanoarchitecture of variable sized graphene nanosheets incorporated into three-dimensional graphene network for dye sensitized solar cells
  • 文献类型:   Article
  • 作  者:   CHANG QH, HUANG L, WANG JZ, MA ZJ, LI PP, YAN Y, ZHU JX, XU SH, SHEN L, CHEN Q, YU QJ, SHI WZ
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Shanghai Normal Univ
  • 被引频次:   25
  • DOI:   10.1016/j.carbon.2014.12.099
  • 出版年:   2015

▎ 摘  要

A novel three-dimensional (3D) nanoarchitecture consisting of hybrid graphene nanosheets (GNs)/graphene foam (GP) was fabricated on the FTO conducting substrate as a high efficient counter electrode (CE) for dye sensitized solar cells (DSSCs). The GNs with various sized such as large-sized heat-reduced graphene nanosheets (H-GNs) and small-sized laser-reduced graphene quantum dots (L-GQDs) were synthesized and used as catalytic materials incorporated into a 3D GF network, respectively. In this design, the aggregations and restacldng of GNs were efficiently reduced, which is beneficial for increasing the amount of the active defective sites at the edges of graphene to the electrolyte solution. Especially, L-GQDs with smaller dimension less than 100 nm have more active defective sites at edges, providing superiority over the large-sized H-GNs in terms of electrocatalytic activity. Meanwhile, the GF network with high conductivity provides fast electron transport channels for charge injection between the GNs and FTO. The DSSC with this hybrid CE exhibited energy conversion efficiency (n) of 7.70% with an open circuit voltage (Voc), short circuit photocurrent density (J(sc)) and fill factor (FF) of 760 my, 15.21 mA cm(-2), and 72.0%, respectively, which is comparable to that of the conventional Pt CE (7.68%). (C) 2015 Elsevier Ltd. All rights reserved.