• 文献标题:   Introduction of Graphene Oxide as Buffer Layer in Perovskite Solar Cells and the Promotion of Soluble n-Butyl-substituted Copper Phthalocyanine as Efficient Hole Transporting Material
  • 文献类型:   Article
  • 作  者:   NOURI E, WANG YL, CHEN Q, XU JJ, PATERAKIS G, DRACOPOULOS V, XU ZX, TASIS D, MOHAMMADI MR, LIANOS P
  • 作者关键词:   copper phthalocyanine, perovskite solar cell, graphene oxide, buffer layer
  • 出版物名称:   ELECTROCHIMICA ACTA
  • ISSN:   0013-4686 EI 1873-3859
  • 通讯作者地址:   Univ Patras
  • 被引频次:   27
  • DOI:   10.1016/j.electacta.2017.03.027
  • 出版年:   2017

▎ 摘  要

Organometal halide perovskite solar cells have been constructed using soluble tetra-n-butyl-copper phthalocyanine as hole transporting material. Devices were constructed and characterized under ambient conditions of 50-60% ambient humidity. Soluble copper phthalocyanine gave a modest PCE of 7.3% but when a buffer layer of either Al2O3 or graphene oxide was introduced between the perovskite and the hole transporting layer the cell efficiency extensively increased and reached 14.4% in the presence of graphene oxide. Corresponding data obtained by employing the standard spiro-OMeTAD as hole transporter gave equivalent performance. Combination then of tetra-n-butyl-copper phthalocyanine with graphene oxide offers a very good alternative of simpler and stable materials for perovskite solar cell construction. The presently recorded data highlight the role of the buffer layer, especially graphene oxide, as the material which blocks shunt paths and facilitates hole transfer between the perovskite and the hole transporting layer. (C) 2017 Elsevier Ltd. All rights reserved.