▎ 摘 要
Graphene-polymer nano-composites are one of the most applicable engineering nanostructures with superior mechanical properties. In the present study, a finite element (FE) approach based on the size dependent nonlocal elasticity theory is developed for buckling analysis of nano-scaled multi-layered graphene sheets (MLGSs) embedded in polymer matrix. The van der Waals (vdW) interactions between the graphene layers and graphenepolymer are simulated as a set of linear springs using the Lennard-Jones potential model. The governing stability equations for nonlocal classical orthotropic plates together with the weighted residual formulation are employed to explicitly obtain stiffness and buckling matrices for a multi-layered super element of MLGS. The accuracy of the current finite element analysis (FEA) is approved through a comparison with molecular dynamics (MD) and analytical solutions available in the literature. Effects of nonlocal parameter, dimensions, vdW interactions, elastic foundation, mode numbers and boundary conditions on critical in-plane loads are investigated for different types of MLGS. It is found that buckling loads of MLGS are generally of two types namely In-Phase (INPH) and Out-of-Phase (OPH) loads. The INPH loads are independent of interlayer vdW interactions while the OPH loads depend on vdW interactions. It is seen that the decreasing effect of nonlocal parameter on the OPH buckling loads dwindles as the interlayer vdW interactions become stronger. Also, it is found that the small scale and polymer substrate have noticeable effects on the budding loads of embedded MLGS. (C) 2014 Elsevier Inc. All rights reserved.