• 文献标题:   Dual-controlled switchable broadband terahertz absorber based on a graphene-vanadium dioxide metamaterial
  • 文献类型:   Article
  • 作  者:   WANG TL, ZHANG YP, ZHANG HY, CAO MY
  • 作者关键词:  
  • 出版物名称:   OPTICAL MATERIALS EXPRESS
  • ISSN:   2159-3930
  • 通讯作者地址:   Shandong Univ Sci Technol
  • 被引频次:   15
  • DOI:   10.1364/OME.383008
  • 出版年:   2020

▎ 摘  要

We propose a dual-controlled switchable broadband terahertz (THz) metamaterial absorber based on a hybrid of vanadium dioxide (VO2) and graphene that demonstrates strong polarization-independent characteristics and works well at a wide range of incidence angles. The peak absorptance of the proposed absorber can be tuned from 26 to 99.2% by changing the Fermi energy of the graphene; the absorptance can be dynamically tuned from 9 to 99.2% by adjusting the conductivity of the vanadium dioxide because of its unique insulator-to-metal transition characteristic. Using these two independent controls in tandem, we found that the state of the proposed absorber can be switched from absorption (>96%) to reflection (>73.5%), and the transmittance can be tuned from 0% to 65% while maintaining broad bandwidth (1.05-1.6 THz), resulting in a better-performing switchable broadband terahertz absorber. Furthermore, we have provided a discussion of the interference theory in which the physical mechanism of the absorption is explained from an optical point of view. The absorber achieves dual-controlled absorptance switching via two independently controllable pathways, offering a new method for switching and modulation of broadband THz radiation. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement