• 文献标题:   In Situ Spectroelectrochemical Detection of Oxygen Evolution Reaction Intermediates with a Carboxylated Graphene-MnO2 Electrocatalyst
  • 文献类型:   Article
  • 作  者:   PAHARI SK, CHEN YT
  • 作者关键词:   oxygen evolution reaction intermediate, raman spectroscopy, reaction mechanism, graphenesupported manganese oxide, electrochemistry
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   5
  • DOI:   10.1021/acsami.1c17909 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

In electrocatalyst-assisted water splitting, the oxygen evolution reaction (OER) imposes a performance limit due to the formation of different catalyst-bound intermediates and the scaling relationship of their adsorption energies. To break this scaling relationship in OER, a bifunctional mechanism was proposed recently, in which the energetically demanding step of forming the *OOH intermediate, through the attack of a water molecule on the oxo unit (*O, with * representing a reactive metal center), is facilitated by proton transfer to the second catalytic site. This mechanism was supported theoretically but so far by only very few experiments with a proton-transfer agent in basic media. However, active metal-containing catalysts could be destroyed in alkaline media, raising questions on practical applications. To date, this mechanism still lacks a systematic spectroscopic support by observing the short-lived and limited amount of reactive intermediates. Here, we report an operando Raman spectroscopic observation of the OER intermediates in neutral media, for the first time, via a bifunctional mechanism using a carboxylated graphene-MnO2 (represented by Gr-C-MnO2) electrocatalyst. The formation of the Mn-OOH intermediate after the attack of a water molecule on the Mn = O complex is followed by a proton transfer from Mn-OOH to the functionalized carboxylates. The role of the functionalized carboxylates to improve the catalytic efficiency was further confirmed by both pH-dependent and isotope (H/D)-labeling experiments. Furthermore, with a unique strategy of using a hybrid aqueous/nonaqueous electrolyte, the OER was alleviated, allowing sufficient Mn-OH and Mn-OOH intermediates for in situ Raman spectroscopic observation.