▎ 摘 要
We present ab initio many-body calculations of the optical absorption in bulk graphite, graphene and bilayer of graphene. Electron-hole interaction is included solving the Bethe-Salpeter equation on top of a GW quasiparticle electronic structure. For all three systems, we observe strong excitonic effects at high energy, well beyond the continuum of pi ->pi(*) transitions. In graphite, these affect the onset of sigma ->sigma(*) transitions. In graphene, we predict an excitonic resonance at 8.3 eV arising from a background continuum of dipole forbidden transitions. In the graphene bilayer, the resonance is shifted to 9.6 eV. Our results for graphite are in good agreement with experiments.