▎ 摘 要
Nanocomposites of silicon nanoparticles (Si NPs) dispersed in between graphene layers emerge as potential anode materials of high-charge capacity for lithium-ion batteries. A key design requirement is to keep Si NPs dispersed without aggregation. Experimental design of the Si NP dispersion in graphene layers has remained largely empirical. Through extensive molecular dynamics simulations, we determine a critical NP dispersion distance as the function of NP size, below which Si NPs in between graphene layers evolve to bundle together. These results offer crucial and quantitative guidance for designing NP-graphene nanocomposite anode materials with high charge capacity.